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Abstract 
 
In this paper, we propose a vocabulary structure identification system. The proposed system receives an image of a 
vocabulary that lies in a textbook, converts the image into text, and then proceeds to identify the vocabulary structure, i.e. 
it identifies and associates each vocabulary term with its translation, explanation, examples and other relevant information. 
Our approach is based on pattern matching and the concept of publisher specifications, which represents the vocabulary 
structure followed by the publisher. Variations in the structure between terms in the same vocabulary are dealt with using 
directed cyclic graphs. Our experimentation shows positive results and encourages us to further development. 
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1. Introduction 
 
This paper aims to create electronic vocabularies from 
lexicographical terms found in English language learning 
books. Our objective is to use structured vocabularies as “raw 
material” in other educational applications.  
In foreign language textbooks, each section includes a 
subsection entitled Vocabulary. However, this title can be 
relatively misleading as this subsection has a dictionary 
structure. More specifically, it includes the new words that the 
student should learn. Each word contains its translation into 
the student's language, its explanation in the foreign language, 
examples of its use, and other information. Our purpose is to 
recognize the structure of such a vocabulary to digitize it. The 
main difficulty in this project is that each publishing house 
adopts a different vocabulary structure. This is where our 
contribution in relation to existing work on digitizing 
dictionaries presented in section 2 focuses. 
 This work has been implemented for English to Greek 
vocabularies. However, it is language independent and can be 
applied to any dictionary involving languages written from 
left to right. 
The steps to digitize a vocabulary are: 
1. Initially, a photo is taken from a book page containing the 
lexical terms. 
2. The photo is subjected to pre-processing to improve some 
of its quality features before it is sent for OCR. 
3. The edited photo is then sent to an OCR service to create 
an RTF file. 
4. Finally, the algorithm proposed in this paper is applied to 
the RTF file to identify the vocabulary structure and its 
content, i.e., to identify the term for each vocabulary entry, its 
translation, explanation, examples of usage, etc. 
 The output of our approach is a JSON file. Early 
experimental results of our system are encouraging as they 
show that vocabularies are recognized correctly with high 
reliability.  

 The rest of this paper's structure is as follows: Section 2 
presents relevant bibliography. A detailed presentation of our 
approach is given in section 3. Following, in section 4, we 
offer experimentation, and finally, in section 5, conclusions 
from this process's implementation are outlined, and 
proposals are made to develop further and exploit it. 
 
 
2. Relevant Bibliography 
 
Creating structured text from sources that contain it in 
amorphous form is achieved through “Information 
Extraction” technology (IE) [1, 2, 3].  
Information Extraction (IE) is a process where structured 
information is automatically generated from one or more texts 
that are fully or partially unstructured. Although emerging as 
a concept in the 70s, it attracted much interest from the 
scientific community in the late 80s and early 90s with a 
DARPA-funded project at Message Understanding 
Conferences (MUC) [1]. IE is applied in a wide range of 
scientific fields such as biomedicine, finance, information 
analysis, web search etc. [4]. Sometimes, it's considered the 
same with Natural Language Processing (NLP) or with 
Information Retrieval (IR) because it may borrow techniques 
from the above technologies or it can be used as an 
intermediate stage by them. However, it must be said that IE 
deals mainly with the structure of a text, whereas in IR, the 
text is usually regarded as a Bag of Words (BOW) [5], as well 
that the goal of IR is to select a subset of texts from a more 
extensive set. IE systems create structured information, either 
a summary or a collapsed text derived from the original or the 
original text in a structured format (database, JSON file, etc.). 
Beyond that, the result can be introduced into new data 
mining processes (DM), NLP, or any other function. 
 In the simplest case, information is extracted by a set of 
rules applied to the unstructured text. [3]. Most advanced 
implementations involve using machine learning algorithms 
so that the “extraction algorithm” can gradually be more 
efficient and accurate in producing results [2]. 
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 Depending on the problem's nature, IE systems fall into 
two categories, single-slot and multi-slot. Single-slot systems 
extract information related to one object per text. In contrast, 
multi-slot systems extract information on multiple items [6]. 
Open IE Systems, a subcategory of IE, create automatically 
the rules based on the type of information that the system 
audit with typical examples [7, 8]. IE systems that processing 
partially structured or unstructured text can be found in [6, 9, 
10, 11, 12]. 
 WHISK is a supervised machine learning software that 
extracts sentence-level information. It needs an input of 
preconfigured text and semantic tags in words or phrases to 
train it for the correct identification of text or words in 
unstructured documents [6]. JASPER [9] uses “template 
rules” to extract information from limited-range texts. Rapier 
algorithm [10] consists of an alternative approach to machine 
learning systems by implementing an inductive logic 
programming (ILP) system. It is a machine learning system 
based on a particular set of attributes that extracts information 
by combining logical rules and background knowledge 
extracted at the first pass of reading the text. The SRV 
machine-learning algorithm uses generic features to extract 
information to operate on a broader range of different text, but 
it is closer to IR systems than IE. Kushmerick [12] presents a 
system of “wrapper” classes trained from an inductive 
learning system.  
 WOE [7] is an Open IE system that uses an information 
extractor to extract a set of “triple information” ({arg1, rel, 
arg2}) from an unstructured text, with rel being a rule 
denoting the semantic relationship between arg1 and arg2. 
WOE is an unsupervised learning information extractor. 
Therefore, it can handle several Web resources, unlike 
TextRunner [8], supervised machine learning that extracts the 
triple information set only from Wikipedia texts. 
 IE systems based on machine learning algorithms or Open 
IE systems require robust computing power to function 
correctly, making their use on portable systems difficult. 
Also, the rules from which information are extracted are 
usually in the form of regular expressions which may be aided 
by grammar rules or rules that attempt to derive a semantic 
relationship between words or expressions [6]. 
 Ferreira et al. [13] leveraged MedInX to give structure in 
narrative data available in electronic form, achieving an F-
measure at 0.95. Uddin et al. [14] have presented an algorithm 
for information and relation extraction to facilitate students' 
locating important terms of a text and their relationships. In 
their method, first, they extract the concepts from eBooks, 
then filtered the critical concepts, subsequently extracted the 
relations between each couple of concepts, and finally 
annotated the unstructured text with tags to be more navigable 
and usable. They applied their method to a set of 30 eBooks 
and reported excellent results. 
Having similar goals, Wang et al. [15] suggested a process for 
creating a concept hierarchy of a book, which is a powerful 
tool in presenting and organizing knowledge.  
 Webpages and their content are also areas in which 
information extraction is applied. Web wrappers are software 
that extracts specific information from a webpage. Traditional 
web wrappers must be adapted to the template of each 
webpage. Cogar et al. [16] proposed a convolutional neural 
network to extract structured information from webpages 
regardless of their template. They use the web rendering 
engine to obtain screenshots and the DOM tree of a webpage. 
The neural network then processes the visual and textual 
content to decide whether a page corresponds to a class 
belonging to a predefined class set. 

 In another work, Romero et al. [17] focused on extracting 
structured information from handwritten texts. Specifically, 
they used as a dataset 1,747 marriage licenses written in 
ancient Catalan in the 17th century. In their methodology, n-
gram models are just a subclass of Probabilistic Finite-State 
Machines (PFSM) while using a framework, known as 
Morphic Generator Grammatical Inference (MGGI), to form 
constraints. The semantic categories that were defined were 
the groom's name, the bride's name, the names of their 
parents, their cities of origin, etc. The results showed a correct 
extraction of the information with high precision and recall. 
 Despite the rich literature on extracting structured 
information from text, none of the above tasks is suitable for 
our purpose. The works mentioned immediately next are more 
closely related to our pursuit. 
 Sassolini et al. [18] attempted to digitize an authoritative 
historical Italian dictionary consisting of 22,700 pages 
divided into 21 volumes, containing 183,594 entries. They 
followed a process for extracting and structuring dictionary 
contents and converting them into Text Encoding Initiative 
XML, which has been organized into several iterative steps to 
reduce the number of unavoidable errors. In their 
methodology, they first used OCR to recognize the text from 
the printed form, thus creating word (.doc) format files, then 
segmented these files so that each segment consisted of 50-60 
pages, and continued with the identification of entries. For 
each identified lexical entry, the headword (or lemma) and a 
text area corresponding to the body of the entire entry is 
recognized. The further steps include the iterative 
segmentation of the body of the lexical entry into different 
blocks with grammatical information, primary senses, sense 
attestations and examples, other numbered sub-senses with 
examples, and etymology. They decided to follow an 
approach based on pattern matching for the lemma extraction. 
A check on the number of conditions satisfied is activated 
whenever the lemma cannot be recognized with certainty. In 
their work, authors mainly focused on the early stages of 
converting the dictionary contents into structured digital data. 
However, as the authors note, the process they propose is not 
automated but instead requires manual work while 
simultaneously being incomplete. It is therefore not suitable 
for our pursuit. 
 Reul et al. [19] dealt with the typographical variations of 
the text found in a lexicon and coded the information. For 
example, changing the font may signal the separation between 
the lemma and its explanation. For this reason, authors used a 
German dictionary from the 19th century, which comprises a 
particularly complex semantic function of typography. The 
method that followed involved a preliminary phase in which 
the text would be scanned to convert from several columns to 
one. Then, a step in which the OCR tool would be modified 
to recognize 19th-century typographic fonts, a phase in which 
two models would be trained, one of which would identify the 
typography and the other the characters, and finally a phase 
which would combine the results of the two models. Despite 
the difficulties, such as that the dictionary fonts used are not 
encountered today, the experimental results showed an error 
in the correct recognition of the characters of the order of 
0.4% and a success rate in recognizing the typography of the 
order 99%. Although applied to a dictionary, this work is 
limited to identifying characters that are expressed in fonts 
that are not currently available. Therefore, it is not suitable for 
our purpose. 
 In a similar work Stain [20] turned older printed 
dictionaries into more easily accessible and more sustainable 
lexical databases. For this reason, he used a dictionary of the 
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early 20th century with lemmas in Old French and word 
senses in German, while the only tool available was a list of 
French lemmas. With the help of OCR, the text was converted 
to electronic format and manual corrections were made where 
the double-column format could not be recognized. Then for 
each of the lemmas available in the list, its location in the text 
was identified; for each of the lemmas, the senses were 
extracted, which were identified based on the differences in 
the typography, such as that they were in italics. Then, for the 
modernization of the dictionary, Stain linked the extracted 
senses to a semantic network, specifically the GermanNet. At 
the same time, for its internationalization, he connected the 
results with a semantic network in English, WordNet. This 
work on semantic evaluation is based solely on typographical 
differences. However, the vocabularies in foreign language 
textbooks take advantage of typographical differences but do 
not rely solely on them. 
 Belyaev et al. [21] deal with almost the same problem, but 
with a dictionary written in Ossetic, an Iranian language 
spoken in the Caucasus by approximately 500,000 people. 
They acknowledged that digitization for dictionaries written 
in widely spoken languages, such as English, had already 
taken place. In contrast, many dictionaries remain only in 
print for other spoken languages, especially minority 
languages. The authors used off-the-shelf software to help 
them separate the parts of an entry, such as the headword, one 
or more senses, one or more examples, etymology, etc. After 
this, the next stage was converting dictionary format to Text 
Encoding Initiative (TEI), which defines a set of tags and 
constraints for representing texts in digital form. The end 
result was the translation of the dictionary into English and 
providing semantic markup that would make it searchable 
across multiple types of data and accessible for machine-
based processing. This work concerns a specific lexicon and 
considers its structure defined and known, so it can not be 
used to identify dictionaries whose structure varies, such as 
the vocabularies contained in foreign language books. 
 Bertrand et al. [22] also deal with the issue of automatic 
document structuring in their work, recognizing that 
typography, such as bold or italic letters, plays a crucial role 
in semantics and can provide important information about the 
document structure. Their two-phase method was applied to 
several list-like historical documents, such as dictionaries, 
catalogues, etc. In the first phase, an entire page is taken as 
input, and with the help of a convolutional neural network, the 
words in it are identified. In the second phase, with the help 
of a deep learning API, each word is classified into one of 
three classes, i.e. bold, italic, and regular. The experimental 
results showed that it is possible to identify the typography 
with an F-score of 0.90. This work is also based solely on 
typographical differences and is therefore unsuitable for our 
purpose. 
 The rest of this paper's structure is as follows: A detailed 
presentation of our approach and implementation of this 
process is presented next. Following is the section in which 
the experimental results of this process are presented. Finally, 
conclusions from this process's implementation are outlined, 
and proposals are made to develop further and exploit it. 
 
 
3. Our Approach 
 
Vocabulary parser (VP) is a component of a larger project that 
offers an alternative way for kids or adults to learn English. 
VP allows automatic parsing of contextual information 
(vocabulary items including terms, explanation, examples 

etc.) from OCRed documents. Input to VP is an RTF (Rich-
Text-Format) document, a ubiquitous output format for 
documents processed by OCR software. 
 
3.1. Image pre-processing and OCR 
The following two subsections present the process of editing 
the image before it is sent for OCR and the OCR process from 
which the .rtf file is created, further analyzed. 
 
3.1.1 Pre-processing 
Before sending the image for OCR, it must first be edited to 
improve some of its features to get the best possible result. 
According to [23, 24], the critical elements that need to be 
looked at and corrected in an image are contrast, pixel noise, 
align of characters, color, and file type. 
 The file type used is .jpg because of its popularity, as it is 
usually the default type of image storage on most imaging 
devices. However, other file types provide better quality, e.g. 
TIFF, PNG [23]. 
 Although it is recommended to convert the image to black 
and white, or grayscale, to get better OCR results [23, 24], we 
don't alter it because we use the color of certain words as a 
feature.  
 We use the openCV framework to correct pixel noise and 
contrast [25, 26]. Specifically, among blur, gaussian blur, 
medianBlur, and bilateral filter, the latter was used to smooth 
the image noise due to its better results in improving image 
quality. 
 Four algorithms [27, 28, 29, 30] were tested regarding the 
alignment of the text lines. The algorithm described in [28] 
provided the best results in terms of the alignment process's 
speed. The original implementation code of the above 
algorithms is available at [31]. 
 
3.1.2 OCR process 
We need an OCR capable of working with Java.  Out of the 
available options, we highlighted the cases of ABBYY OCR 
cloud SDK [32], Tesseract (Tess4J) [33] and Asprise [34]. 
According to [24], in the paid software category, ABBYY is 
the best one, while in the free software category, it is 
Tesseract. We eventually used ABBYY's service, but in the 
future, we may even try Tesseract's free software, which has 
excellent reviews, although it has a more complicated setup. 
 
3.2. Publisher Specifications 
VP strives to be as generic as possible. Attempts to deal with 
the fact that the publishers of foreign language educational 
books use different formats in vocabulary presentation. To 
accommodate this variation, VP introduces the concept of 
Publisher Specifications (P-Specs), which encapsulate the 
exact vocabulary format followed by a specific book 
publisher. Each publisher has its P-specs created outside of 
the VP and is fed into the system before processing book 
pages. For this reason, VP contains an internal Publisher 
Specs Registry (PSR), which stores all the injected-into-the-
system P-specs. For the VP to process an OCR document 
created from a publisher's book page, the P-specs for that 
publisher must be in the registry. 
 Having externalized the format specifications declaration 
of each publisher, VP offers excellent flexibility and 
extensibility. By correcting existing specifications, we can 
enhance the VP's capabilities with zero or minor code 
modifications. To introduce a new Publisher into the system, 
we must carefully craft a new P-specs document reflecting the 
vocabulary format and inject it into the registry. P-specs are 
currently written in YAML format for the Proof of Concept. 
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However, this is an implementation detail that could be 
changed at a later stage. What's important here is that we can 
add, change or remove P-Specs files to the system. Any new 
addition to the registry will be loaded automatically, and the 
subsequent processing cycle can leverage these new 
specifications. 
 
3.3. Multiple Passes 
To make VP more user friendly, processing a document does 
not require the user to provide information such as publisher 
name. Instead, VP tries to recognize the publisher from the 
document itself. The publisher's recognition is being achieved 
by PSR, which holds all the details about each publisher's 
vocabulary format. Initially, the RTF document is parsed 

using a third-party library to extract the information needed 
for further processing. After that, information takes the form 
of a stream of strings representing various tokenized 
vocabulary parts, where each part could be a single token like 
a word or multiple tokens like a translation phrase or an 
example sentence. 
 The stream is then processed twice. In the first pass, the 
system can recognize the format and mark P-Specs from the 
registry as active. Once an active publisher has been 
identified, a second pass consumes the streamed vocabulary 
parts to recognize valuable vocabulary items. Validity relies 
on the specific publisher's specifications context.  
 A more elaborate diagram showing the complete VP high-
level architecture and use case flow is shown in Figure 1. 

 

 
Fig. 1. High-level architecture VP diagram 
 
3.4. Exposed API 
As shown in the diagram of Figure 1, VP exposes three 
different API segments: 
• API to pass a new RTF document for parsing, which is 
used by VP consumer application. 
• API to register/unregister/modify Publisher 
Specifications, used by <project-name> human operator – end 
user. 

• API to consume the inventoried vocabulary items after 
successfully document processing, which is used by VP 
vocabulary-consuming applications. 
 
3.5. Vocabulary Format Variations 
Vocabulary formats tend to be quite complicated. There may 
be optional parts, and each term might have a slightly 
different format between various publishers. We introduce a 
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processing mechanism that relies on Directed Cyclic Graphs 
(DCG) to cope with these problems. The construction of a 
suitable DCG for each publisher comes from the P-Specs 
context. For example, suppose that a publisher has the 
following format for its vocabulary items where black color 
represents mandatory parts whereas grey color represents 
optional parts  
TERM, GRAMMAR_TYPE, TRANSLATION, EXAMPLE, 
DERIVATIVES 
 Then, the system will create a DCG, as shown in Figure 
2. 
 

 
Fig. 2. DCG sample 
 
 Processing will always begin from the TERM vertex and 
move forward in the graph. In cases where there is more than 
one potential transition to follow, we must resort to extra help 
for correctly identifying the path. This is accomplished by 
using regular expressions describing the character pattern that 
each vocabulary part follows. These regular expressions exist 
as part of the publisher specifications. Being able to 
differentiate between different parts for each vocabulary item 
in a specific publisher is quite challenging. P-Specs editor has 
to ensure regular expressions are very accurate. Otherwise, 
the system will fail to choose a correct path transition and thus 
extract semantically valid vocabulary items. We have been 
following this approach in the Proof of Concept. Still, if it 
leads to high levels of complexity or functional errors (in case 
of undetermined path selections) due to lack of robustness, 
other methods should be investigated. 
 
3.6. Publisher Specifications 
Publisher specifications for the PoC are based on YAML 
format. In the beginning, it contains publisher metadata, as 
shown in Figure 3. 
 

 
Fig. 3. Publisher metadata 
 
 It contains specifications for each vocabulary part item as 
found in the publisher (Figure 4). In this example, we can see 
that we declare two sub-types of specifications. The 
specifications reflecting RTF format-related data for a 
specific vocabulary part and those reflecting structure-related 
data (such as language, pattern etc.). We can see that the 
regular expression pattern that will help us recognize the 
vocabulary in the second pass of the processing is in the 
tokenTypeSpecs section of the YAML file for each 
vocabulary part. 
 

 
Fig. 4. Specifications of each vocabulary part 
 
 To construct an appropriate graph representing exactly all 
the potential vocabulary part transitions, we have the 
following YAML section, as shown in Figure 5. 
 

 
Fig. 5. Structure for the creation of the graph 
 
 These transitions will be parsed, and the corresponding 
graph will be created upon Publisher Specs registration. 
 
 
4. Experimentation 
 
The dataset used to test the procedures described above 
consists of 14 images taken from two different books. The 
photos were taken indoors from a mobile phone with 
automatic settings and under daylight conditions. Some pages 
had handwritten notes. Also, some of the pages had the 
characteristic curvature that exists when a book is opened on 
a table. We mention this because this curvature distorts the 
layout of the page content. The result is that the text lines are 
not entirely aligned with each other, which negatively affects 
accurate text recognition in some cases. 
The OCR process is critical because the characters, 
punctuation marks, and character formatting elements used 
for IE must be correctly depicted in the RTF file. We initially 
thought that some formatting elements, such as the size and 
type of the font and its color, are essential in the analysis 
process. Still, our tests so far have shown that it is not always 
possible to obtain this information correctly during the OCR 
process. For this reason, we currently focus only on features 
that can be accurately and reliably obtained. When characters, 
punctuation marks, and formatting features are correctly 
embedded into the RTF file, the parsing process is considered 
100% successful. On the contrary, when there are problems, 
the process produces incorrect results. So far, the RTFs 
produced at this stage are not capturing the content 100% 
correct, so to do the parsing process correctly, we must correct 
them manually. 
 In the 14-page sample, 378 different lexicographical 
terms are 100% successfully recognized and transformed into 
a structured format (JSON type) in the manually corrected 
content. Figure 6 shows a sample of the content of one of the 
sample images, and Figure 7 shows a sample of the content of 
an RTF file resulting from the OCR procedure, and Figure 8 
shows the corresponding content in a structured form. 
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Fig. 6. Content sample photo 
 
 

 
Fig. 7. Content of RTF file 
 

 
Fig. 8. Content of JSON file 
 

 There are cases where we can only complete the parsing 
process with regular expressions. However, this is not always 
possible, so we use regular expressions in conjunction with 
formatting text features to implement parsing. In this way, we 
can do parsing to texts in which the words we have to 
distinguish have similar characteristics regarding the type of 
regular expression that they are recognized. 
 
 
5. Conclusions and Further Development 
 
The results from the experiments conducted in this sample of 
the documents are very encouraging, demonstrating that the 
IE in the manner described above is feasible, even though it 
is still at an early stage. 
 However, we need to perfect the process of creating RTF 
files from images as our next step. 
 Enriching the existing process with functions of finding 
text that does not meet the specified specifications and 
isolating it so that the parsing process can continue properly 
on the remaining text is another step in creating a more 
flexible and functional parsing process. 
 Another step is to analyze sample texts from a sufficiently 
large number of different publishers to disclose the standard 
features. In this manner, we may create a general specification 
file used to parse text by many other publishers. 
 Another direction is creating a machine learning 
algorithm that will analyze texts to develop the specification 
file automatically. Creating an algorithm that merges the 
information contained in different specification files into one 
is another implementation step towards automating the IE 
process we have described. 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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